



# DISVA

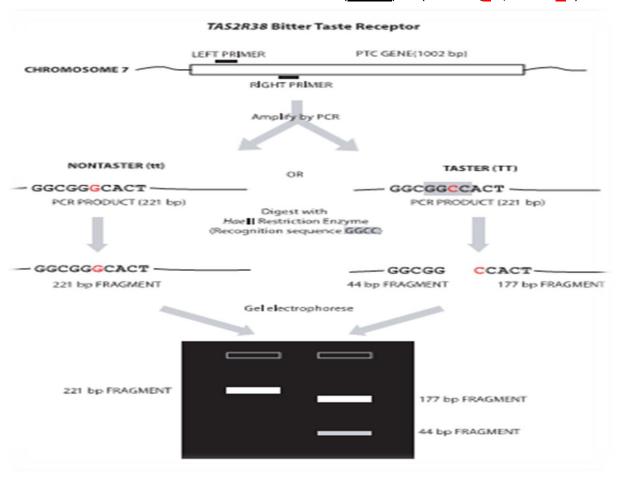




### Laboratorio Genetica Molecolare 2017:

Docenti: Davide Bizzaro, Anna La Teana, Bruna Corradetti, Marco Barucca

Determinazione del polimorfismo del gene <u>TAS2R38</u> coinvolto nella percezione del gusto amaro.


I mammiferi riconoscono soltanto 5 gusti di base: dolce, acido, amaro, salato e umami (il sapore di glutammato).

Il riconoscimento dei gusti è mediato da cellule sensoriali specializzate (papille gustative) connesse direttamente al sistema nervoso centrale. La percezione del gusto è un processo che si compone di due fasi: inizialmente le molecole si legano a recettori specifici posizionati sulla superficie delle cellule sensoriali, poi le cellule sensoriali generano un impulso nervoso elaborato dal cervello. Per esempio, la stimolazione di cellule sensoriali deputate a rispondere allo stimolo del **dolce** genera la percezione del sapore dolce nel cervello.

Il gusto amaro viene riconosciuto da recettori proteici nella cui produzione sono implicati circa 30 geni differenti (28 geni funzionali validati e 16 pseudogeni). Uno dei più importanti è il gene che codifica per il recettore sensibile alla *phenylthiocarbamide* (PTC), *TAS2R38* (fra gli altri permette di discriminare e apprezzare il ricercato e particolare gusto amaro della cicoria).

Nella popolazione umana tale gene presenta 3 siti nucleotidici polimorfici (ossia differenti forme geniche alleliche) e noi analizzeremo uno di questi polimorfismi genici, che genera due diverse forme geniche alleliche, l'allele dominante  $\mathbf{T}$  e il recessivo  $\mathbf{t}$ .

Gli individui *omozigoti recessivi* (non-taster **tt**) non percepiscono l'intenso gusto amaro della <u>PTC</u>, a differenza dei tasters (*omozigoti dominanti* **TT** e *eterozigoti* **Tt**) che lo percepiscono in modo simile. L'allele recessivo **t** a livello della base 145 della sequenza di DNA del gene cromosomico, possiede una <u>Guanina</u> al posto della <u>Citosina</u> che è presente nell'allele dominante **T**, questa differenza determina l'assenza nell'allele recessivo **t** del sito di taglio del DNA riconosciuto dall'enzima di restrizione **Haelli** (<u>GG\CC</u>) (**T** = GG\<u>C</u>C).







L'esperienza di laboratorio si articolerà in 2 sessioni:

#### Sessione A:

- ➤ 1 Estrazione di DNA genomico da tampone buccale/salivare;
- 2 Amplificazione con PCR di un tratto del gene TAS2R38 contenente il sito polimorfico considerato
- 3 Preparazione del Gel d'Agarosio

#### **Sessione B:**

- ➤ 1 Digestione dell'amplificato con l'enzima di restrizione HaeIII (GG\CC)
- 2 Analisi dei prodotti di restrizione del DNA mediante Elettroforesi in gel di agarosio
- > 3 Interpretazione dei risultati e discussione.

### A1 ESTRAZIONE DEL DNA GENOMICO DA TAMPONE BUCCALE

Ogni protocollo di estrazione del DNA necessita fondamentalmente di 2 passaggi: la lisi cellulare, per il rilascio del DNA, e l'allontanamento di tutti quei materiali e molecole (proteine, sali, composti organici, RNA, ecc.) che potrebbero interferire con le successive fasi di analisi. L'estrazione del DNA genomico può avvenire con l'impiego di solventi organici (es: fenolo, cloroformio, alcoli), oppure tramite l'utilizzo di appositi kit rapidi di estrazione e purificazione. La procedura di estrazione scelta è riportata sotto:

- 1. Eseguire il tampone buccale roteando per circa **30**" secondi il tampone cotonato sulla superficie interna della guancia e lasciare asciugare il tampone per almeno **5**' minuti a temperatura ambiente (**TA**)
- 2. Immergere il tampone in una provetta da 1,5 ml contenente 22 μl di soluzione T (Tissue Prep Solution) + 180 μl di soluzione di estrazione E (Extraction Solution); lasciare incubare per 3'-5' (min.) a temperatura ambiente (TA) roteando 3-4 volte lentamente il tampone all'interno della provetta per agevolare il distacco delle cellule.
- 3. Spremere bene il tampone contro la parete della provetta, buttare il tampone e chiudere la provetta.
- 4. Miscelare con agitatore "Vortex" per 20"- 40" (sec.).
- 5. Incubare il campione a **TA** per circa **8'**.
- 6. Incubare il campione a 95-100°C per 3'-4'.
- 7. Aggiungere **180**  $\mu$ l di soluzione di neutralizzazione **N** (**Neutralization Solution**) e miscelare con Vortex per **10**"
- 8. Effettuare una breve centrifugazione in minicentrifuga per **15-30"** a **5000 rpm** per precipitare eventuali frammenti cellulari ecc.
  - Il campione così ottenuto contiene il **DNA genomico** umano (**Estratto totale**) e può essere conservato a 4°C per qualche giorno, oppure essere utilizzato subito per l'amplificazione del DNA mediante PCR.

# A2 AMPLIFICAZIONE MEDIANTE PCR DEL TRATTO DI SEQUENZA GENICA (DNA) CONTENENTE IL SITO NUCLEOTIDICO POLIMORFICO

Preparazione della miscela di amplificazione per 1 campione:

| REAGENTE             | VOLUME µl |
|----------------------|-----------|
| Mix di reazione C    | 16 μΙ     |
| Estratto totale DNA  | 4 μl      |
| Genomico             |           |
| <b>VOLUME TOTALE</b> | 20 μl     |





## Protocollo di amplificazione PCR del DNA

| Fasi (step)            | Temperatura °C | TEMPO      | N° CICLI |
|------------------------|----------------|------------|----------|
| Denaturazione Iniziale | 94             | 3 minuti   | 1 x      |
| e attivazione della    |                |            |          |
| DNA Polimerasi         |                |            |          |
| Denaturazione          | 94             | 15 secondi |          |
| Appaiamento primers    | 68             | 15 secondi | 35 x     |
| Estensione primers     | 72             | 30 secondi |          |
| (sintesi DNA)          |                |            |          |
|                        |                |            |          |
| Estensione finale      | 72             | 2 minuti   | 1 x      |

Le microprovette vengono incubate nel Termociclatore per l'effettuazione della reazione di amplificazione. **Tempo totale PCR circa 60 minuti.** 

| Componenti della mix di reazione C:              |  |  |
|--------------------------------------------------|--|--|
| PCR Buffer: 20 mM Tris-HCl, pH 8.3, 100 mM KCl,  |  |  |
| 3 mM MgCl2, 0.002% (w/v) gelatin.                |  |  |
| dNTPmix: 400 μM di ognuno dei 4 deossinucleotidi |  |  |
| trifosfati                                       |  |  |
| JumpStartTaq polimerasi 1U                       |  |  |
| JumpStart Taq antibody 1U                        |  |  |
| Acqua Ultrapura sterile (MilliQ) +               |  |  |
| Primers Forward e Reverse 0,4 μM ognuno          |  |  |

### A3 PREPARAZIONE DEL GEL DI AGAROSIO al 2%

- 1. Allestire la vaschetta per la preparazione del gel d'agarosio e inserire il pettine per formare i pozzetti
- 2. Pesare la giusta quantità di agarosio (0,8 gr) e metterlo in una beuta di vetro PIREX
- 3. Aggiungere alla beuta con agarosio il volume desiderato di Tampone elettroforetico 1X (40 ml di BIONIC 1X)
- 4. Mettere la beuta nel microonde (High) o su piastra riscaldante\agitatore (200°C) fino a completa dissoluzione dei granuli di agarosio (la soluzione deve diventare trasparente e omogenea)
- 5. Attendere che il gel si raffreddi a circa 50-60°C e aggiungere al gel liquido il colorante del DNA Gel-Red, così da ottenere una concentrazione finale 1X (3,5 µl)
- 6. Versare la soluzione di gel d'agarosio nella vaschetta per la preparazione del gel evitando la formazione di bolle.
- 7. Lasciar solidificare il gel per circa 30' a TA
- 8. Porre il gel nella cella elettroforetica cosicché i pozzetti si trovino dal lato dell'elettrodo negativo (nero)
- 9. Riempire la cella elettroforetica con tampone BIONIC 1X fino a coprire l'intera superficie del gel
- 10. Rimuovere delicatamente il pettine facendo attenzione a non rompere il gel





# B1 DIGESTIONE DEGLI AMPLIFICATI CON ENDONUCLEASI DI RESTRIZIONE SEQUENZA SPECIFICA: *Hae III* (GG\CC)

La caratteristica più importante di un enzima di restrizione è la capacità di tagliare il DNA a doppia elica a livello di specifiche sequenze di coppie di basi chiamate "siti di restrizione". Per lo studio del polimorfismo 145 c/g (49 pro/ala) del gene *TAS2R38* utilizzeremo l'enzima di restrizione *Hae III* (GG\CC). Nella nostra esperienza, la mix di digestione enzimatica avrà un volume totale di 20 μl e la composizione riportata sotto:

| REAGENTE              | VOLUME µl |
|-----------------------|-----------|
| Tampone 10X +         |           |
| Hae III 10U/µl +      | 10 μl     |
| Acqua MilliQ          |           |
| DNA (prodotto di PCR) | 10 μl     |
| Volume totale         | 20 μl     |

La mix di digestione sarà lasciata incubare per circa 15'-30' a 37°C.

# B2 SEPARAZIONE ED ANALISI DEI FRAMMENTI DI RESTRIZIONE DEL DNA MEDIANTE ELETTROFORESI IN GEL DI AGAROSIO

I frammenti di DNA ottenuti dalla digestione enzimatica, possono essere facilmente separati e visualizzati mediante elettroforesi in gel di agarosio e colorazione con fluorocromi che legano il DNA come il Gel-Red.

### CARICAMENTO DEL GEL ED ELETTROFORESI

| REAGENTE                        | VOLUME µl |
|---------------------------------|-----------|
|                                 |           |
| Campione (Amplificato digerito) | 9         |
| VOLUME TOTALE                   | 9         |

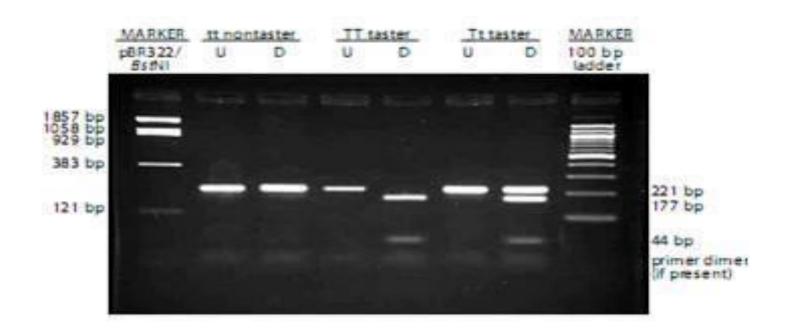
| REAGENTE                                   | VOLUME µl |
|--------------------------------------------|-----------|
|                                            |           |
| Campione (Amplificato <b>NON</b> digerito) | 9         |
| VOLUME TOTALE                              | 9         |

(Se necessario aggiungere 1-2 ul di Loading Dye 10x (colorante di caricamento) a ciascun campione)

- 1. Caricare i volumi indicati in pozzetti separati per ogni campione, usando un puntale nuovo per ogni campione.
- 2. Caricare il Marcatore di peso molecolare (circa  $5 \mu l$ ).
- 3. Annotare l'ordine dei campioni caricati.
- 4. Chiudere la cella elettroforetica e collegare gli elettrodi all'alimentatore
- 5. Accendere l'alimentatore, regolarlo su 130 Volt e far "correre" per 20'-30'
- 6. Spegnere l'alimentatore e aprire la cella elettroforetica
- 7. Togliere il supporto con il gel e osservare le bande al trans-illuminatore UV






#### INTERPRETAZIONE DEI RISULTATI **B3**

Condizione di omozigosi per l'allele recessivo (Non-Taster tt): mostra 1 singola banda di 221 bp nella stessa posizione del campione non digerito, a causa della assenza del sito di taglio dell'enzima di restrizione.

Condizione di omozigosi per l'allele dominante (Taster TT): mostra 2 bande 177 e 44 bp (quest'ultima può non essere visibile): l'enzima ha riconosciuto lo specifico sito di taglio sul DNA amplificato, dividendolo in 2 frammenti.

Condizione di Eterozigosi (Taster **Tt**): avendo l'eterozigote entrambi gli alleli,

mostra tutte e 3 le bande 221, 177 e 44 bp.

